skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Grace"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dialogue systems are designed to offer human users social support or functional services through natural language interactions. Traditional conversation research has put significant emphasis on a system’s response-ability, including its capacity to understand dialogue context and generate appropriate responses. However, the key element of proactive behavior—a crucial aspect of intelligent conversations—is often overlooked in these studies. Proactivity empowers conversational agents to lead conversations towards achieving pre-defined targets or fulfilling specific goals on the system side. Proactive dialogue systems are equipped with advanced techniques to handle complex tasks, requiring strategic and motivational interactions, thus representing a significant step towards artificial general intelligence. Motivated by the necessity and challenges of building proactive dialogue systems, we provide a comprehensive review of various prominent problems and advanced designs for implementing proactivity into different types of dialogue systems, including open-domain dialogues, task-oriented dialogues, and information-seeking dialogues. We also discuss real-world challenges that require further research attention to meet application needs in the future, such as proactivity in dialogue systems that are based on large language models, proactivity in hybrid dialogues, evaluation protocols and ethical considerations for proactive dialogue systems. By providing a quick access and overall picture of the proactive dialogue systems domain, we aim to inspire new research directions and stimulate further advancements towards achieving the next level of conversational AI capabilities, paving the way for more dynamic and intelligent interactions within various application domains. 
    more » « less
    Free, publicly-accessible full text available May 31, 2026
  2. Free, publicly-accessible full text available April 2, 2026
  3. Free, publicly-accessible full text available April 4, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Free, publicly-accessible full text available March 31, 2026
  6. Yang, Grace Hui; Wang, Hongning; Han, Sam; Hauff, Claudia; Zuccon, Guido; Zhang, Yi (Ed.)
  7. Abstract Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2ʹ-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV–Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit. 
    more » « less